CARBON-CARBON BOND FORMATION BY ADDITION OF J-RADICALS TO ALKENES

Bernd Giese* and Juan Antonio González Gómez

Institut fur Organische Chemie und Biochemie Technische Hochschule Darmstadt Petersenstraße 22, D-6100 Darmstadt, Germany

Summary: Cyclopropylmercury bromide and 7-norbornylmercury bromide, respectively, react with NaBH $_4$ and alkenes $\frac{1}{2}$ via σ -radicals $\frac{1}{2}$ and $\frac{1}{2}$ to yield products $\frac{1}{2}$ and $\frac{1}{2}$ by carbon-carbon bond formation.

Reductions of alkylmercuric salts $\underline{1}$ with NaBH $_4$ in the presence of electron deficient alkenes $\underline{2}$ yield products $\underline{3}$ in a carbon-carbon bond formation reaction $\underline{1}$). These syntheses occur via alkyl radicals $\underline{4}^{1,2}$ that attack alkenes $\underline{2}$ to give adduct radicals $\underline{5}$. Trapping of $\underline{5}$ with RHgH as H-donor leads to reaction products $\underline{3}$. We have now shown that this "mercury-method" can also be applied to systems in which the pyramidal σ -radicals $\underline{6}^{3}$ and $\underline{7}^{4}$ are the intermediates $\underline{5}^{5}$.

The reduction of cyclopropylmercuric bromide or 7-norbornylmercuric bromide is carried out with a 3 molar amount of $NaBH_4$ or $NaBH(OCH_3)_3$ in the presence of a threefold excess of alkene $\frac{1}{2}$ in CH_2Cl_2 (10% solution) at room temperature (30-60 min). After filtration and destillation products $\frac{1}{2}$ and $\frac{1}{2}$ are formed in 50-70% yields (Table I).

Yields of products $\underline{9}$ and $\underline{11}$ by reduction of organomercuric salts $\underline{8}$ and $\underline{10}$ in the presence of alkenes $\underline{2}$.

Table I

Alkenes <u>2</u>			Yıelds	(%) of Products
X	Х	Z	2	11
Н	Н	со ₂ сн ₃	53	56
H	H	CN	61	63
H	Cl	CN	61	60
со ₂ с ₂ н ₅	Н	со ₂ с ₂ н ₅	67	70

<u>Acknowledgement</u>: This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- B. Giese, J. Meister, <u>Chem. Ber</u>. <u>110</u>, 2588 (1977).
- 2) D. J. Pasto, J. A. Gontarz, J. Am. Chem. Soc. 91, 719 (1969);
 - J. M. Whitesides, J. S. Filipo, <u>J. Am. Chem. Soc</u>. <u>92</u>, 6611 (1970);
 - R. P. Quick, R. E. Lea, <u>Tetrahedron Lett</u>. <u>1974</u>, 1925.
- 3) R. W. Fessenden, J. Phys. Chem. 71, 74 (1967).
- 4) P. Bakuzıs, J. K. Kochi, P. J. Krusic, <u>J. Am. Chem. Soc</u>. <u>92</u>, 1434 (1970).
- 5) B. Giese, J. Stellmach, <u>Tetrahedron Lett</u>. <u>1979</u>, 857;
 - B. Giese, J. Stellmach, Chem. Ber. 113, 3294 (1980).

(Received in Germany 8 April 1982)